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Abstract.  In this paper, we present a multi-client quadratic functional encryption
(MCQFE) scheme from function-hiding inner-product (FHIP). The main challenge in
such construction is that all the clients require the access to the master secret key of
the underlying FHIP scheme, which clearly breaches the security.

To overcome this challenge, we present an elcient decentralized version of FHIP
scheme of Lin (Crypto 16). This leads to a 2-step MCQFE (2-MCQFE) scheme. In a
2-step MCQFE scheme, the encryption phase is a (non-interactive) protocol among
clients and a set of honest-but-curious authorities. More precisely, clients are the
owner of messages and the master secret-key of the underlying FHIP is shared among
authorities. In the brst step, the client publishes a pre-ciphertext pct associated with
its message. Then in the second step, each authority generates its sharect; extracted
from the pre-ciphertext. The public aggregation of these shares ct; will generate the
target ciphertext ct which then would be applied on the functional key skr to compute
the quadratic functionality. The security model is strong enough to consider no trust
among clients and authorities, and also the revelation of some secret keys (of clients or
authorities) through corruptions. We instantiate our 2-MCQFE scheme and prove its
security in the random-oracle model based on the SXDH assumption. Moreover, we
show that its security holds as long as at least one of the authorities is not corrupted.

1 Introduction

Functional Encryption. Functional encryption is a strong and general tool enabling compu-
tation over encrypted data with non-interactive decryption 3. Given a functional-key sk= and
ciphertext cty,, everyone can computefg (m) in the clear where the system is parameterized
by the functionality f.

The idea of functional encryption originated as an extension of Identity-Based Encryption
(IBE) [ 11,29], Searchable Encryption [, 10], Attribute-based encryption [22] and Predicate
Encryption [21, 23]., where a special form of functionality f in FE can specify it as the
mentioned encryption systems. On the other hand, all known constructions supporting
general functionality, mainly suler from: ine"ciency, relying on strong assumptions or some
limitations on the number of collusions [16,19, 20]. Thus, as a trade-o! one should see FE as
a general concept but try to focus on the other special but still wield classes of functionalities.
As the special cases of functionality in FE,inner-product [3, 6] and quadratic functionality

3 Homomorphic Encryption is another tool for computation over encrypted data, where for the
decryption it needs to interact with the owner of the secret-key. While in FE everyone holding
the ciphertext and functional-key can decrypt the message.
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[7,17,26] have attracted more attention due to their use in real-world applications and other
theoretical primitives [8, 26).

Inner-Product and Quadratic Functionalities. When a FE system is parameterized by
the inner-product functionality (IPFE) [ 3, 6], the ciphertext ct, and the functional-key
sk, are associated with vectors with the same dimension, namelx = (z1,...,2n) and
Y = (vy1,---,vn) (res.). Then, the decryption returns f,(x) = !x,y" = inzl xjyi. While
the traditional security of IPFE mainly focuses on the privacy of messagex, the security
requirement for function-hiding IP (FHIP) is stronger and it concerns the privacy of both
vectors X and y. For quadratic functionality [ 7,26], the ciphertext and the functional-key are
respectively associated with messagéx,y) # M " $M ™ and the matrix F # F"" ™ where
M ,F are the message and function space. The decryption algorithm returngg (x,y) =
xTFy. Most of the existing works have focused on IPFE (8, 6, 24, 28]), while FE for the
quadratic functionality (QFE) has got less attention. To the best of our knowledge, so far
there are four works in this Peld: Lin [26] presented a (single-input) QFE scheme from FHIP
based on the SXDH assumption and in the standard model. InT], authors present a QFE
scheme based on the MDDH and 3-party DDH assumptions in the standard model. The
more e"cient construction of [ 7] and also the construction in [L7] are proved to be secure in
the generic group model. In 7], the QFE scheme is also based on the SXDH assumption.

Multi-Client FE. In a multi-client setting of FE (MCFE), message comes from dilerent sources
namely, there are (polynomially) many clients who do not trust each other §,5,12,13,18].
Each client is assigned a secret-key enabling the autonomous encryption secure against other
clients. In MCFE, each ciphertext is also associated with a label giving a good Rexibility to
control the leaked information. More precisely, while for the same label one can have a kind
of mix-and-match among messages from dilerent clients, for dilerent labels this would not
be possible.

1.1 Contributions

While MCFE for IP has been well studied [2,4, 12, 13, 25|, there is no construction for
multi-client quadratic FE (MCQFE). In this paper:

An Extended Syntax and its Applications. We introduce an extended syntax of MCQFE such
that the encryption phase is a protocol among clients and some authorities. This syntax can
overcome some di"culties (in multi-client setting) by allowing some communications during
the encryption phase. We also present some applications to show how the mentioned syntax
can be used/realized by the real world problems.

E!cient Non-Interactive Instantiation.  We instantiate our suggested syntax without any
interactions among clients and authorities. More precisely, clients are considered to be the
owner of data while the authorities, holding their own secret-keys, are in charge of some
computations over encrypted data from clients. Such instantiation also avoid the trust among
clients and authorities. The main security requirement is that at least one of the authorities
should not collude with others (should not be corrupted) to recover a master secret-key
shared among them. Our presented applications explain how this requirement can be fulblled
naturally or by some strategies. Our instantiation is inspired from single-input QFE scheme
of Lin [26], while its extension to multi-client setting can be challenging, mainly due to the
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corruption of secret-keys (collusion of parties against each other). We explain these challenges
and how to go around them (see Sectiori.3). Moreover, the size of the ciphertext in our
scheme is linear w.r.t the number of clients/slots, making it more interesting to be used in
the real-world applications.

Decentralized FHIP. Our instantiation needs a decentralized FHIP (d-FHIP) as a building
block. Thus, we present a decentralized FHIP scheme in the standard model and based on
the SXDH assumption. We believe this d-FHIP scheme also can be of independent interest,
since it is the brst decentralized FHFE construction e"ciently realizing the inner-product
functionality.

1.2 Scenario and Applications

In a standard syntax of MCQFE scheme, each client encrypts its message by its own secret-
key and without any help from other parties. We extend this syntax where the encryption
phase is a protocol among clients and a set of authorities. The client is the owner of the
message and each authority owns an individual secret-key. Clients can generate the target
ciphertexts communicating with authorities. While this new syntax may help to go around
some challenges, it make sense only if it can be realized by constructions with a reasonable
security level, e"ciency and number of interactions. Our suggested 2-MCQFE construction
realizes such syntax with e"cient computational overhead and number of communications
(see Fig.1). The suggested security model avoids any trust among clients and authorities.
Moreover, the adversary can corrupt a set of clients and authorities to access some secret-keys
as well.

A curious reader may ask why we need to go for such extension and whether it was
not possible to have a MCQFE in its standard syntax. Though we do not present any
impossibility result in this paper, we discuss the main challenges giving the intuition that
the instantiation of MCQFE in its classical syntax and without 3-linear maps can be hard.

First of all, note that a trivial QFE scheme is to encrypt all the multiplications z;y; for
i # [n],j # [m] by a IPFE scheme, though due to its quadratic ciphertext-size (w.r.t the
number of slots) it is not interesting. This trivial scheme (even though it is of quadratic
ciphertext-size) does not work for the multi-client setting as «; and y; come from dilerent
users. Moreover, in the following we see how one can probably get MCFE from 3-linear maps
in a not so trivial way.

Generally speaking, in a QFE scheme, to make dilerent combinations possible (in an
e"cient way %), each part is encrypted separately asty, and cty, (i.e., ctyy =(Cto,Cty,,Cty, )ij
where ctg is either empty or the encoding of some randomness). We believe that two main
cases are possible based on the existing works:

(1) either the ciphertexts cty, and cty, use dilerent randomness (e.g.,r for all x; and ¥ for

all y;), but a combination of these randomness should be embedded in the ciphertext astg
(or instead, they may use related randomnesses like a matrix and its inverse). Having this
combination in cto allows to combine ciphertexts associated withe; or y; . This strategy is
used in [7,17].

(2) or the ciphertexts are generated based on the same secret-key allowing to combine the
ciphertexts [26].

For a multi-client setting in the brst case, we need separate encodings of randomnesses
(e.g., [r]1 and [+*], generated by random oracles) such that they can be combined during

4 See the mentioned trivial QFE scheme to understand why we need to encrypt each part separately.
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the decryption (by pairing as [»r"] ). The problem here is that in the decryption we need to
combine the randomness with a functional-keysk:= (see [, 17]) and for the security reason,
specially in the multi-client setting that corruptions are possible, sk= is also involved with
some encodings. This means that for the schemes falling in this category,[L7], one probably
can avoid communications through other tools like 3-linear maps, which is out of the scope
of this paper.

In the second case, as the clients are not trusted, instead of giving them the same secret-
key, one may share the secret-key among some authorities, and add some communications
to generate the shares of ciphertexts associated with data from each client. In this paper
we are following this idea. We intuitively believe, this strategy needs reasonable number of
communications, brst because the number of authorities can be independent of the number of
clients, and second we can generate and share the key once in the setup phase. Particularly,
the linear and homomorphic property of building blocks in our instantiation, allows the
authorities to generate and aggregate their shares without communicating with each other.

Fig. 1 explains the scenario of our construction called 2-step MCQFE (2-MCQFE). In
a 2-MCQFE scheme, the encryption protocol is a 2-step process: in the prst step, each
client (independently) publishes a pre-ciphertextpct,, of its messagen. Then, in the second
step, the authority ¢ receiving pct,, generates its share agty; . The decryption is done
without any help from authorities: brst, the shares ct,,; are aggregated to generate a target
ciphertext cty, . Then, the given functional-key sk- is applied over ciphertextsct,, to compute
the value of the quadratic functionality. The aggregation phase does not need any secret
information and can be run by the decryptor or by clients where each client aggregates the
shares concerning its own message. Clearly, the latter one needs one round of interaction
among clients and authorities, and thus we prefer to put the aggregation on the decryptor
side. We instantiate this scenario based on SXDH assumption in the random oracle model
such that our presented 2-MCQFE is secure as long as at least one of the authorities is not
colluding with others (is not corrupted).

Enc
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Fig. 1: Scenario of our 2-MCQFE construction. Client C,; and Cy, independently generate their
pre-ciphertexts pct, and pct,, . Then, ct,,: is the share of authority A; extracted from pct,,, and
ct,, is the aggregation of {Ct,, . }+.

Applications. As an application of 2-MCQFE,scenario, one can think of data classiPcation
where the messages are strings of bits and ij fij ziy; computes (weighted) similarity
between two collectionsx and y of data. As a special example, imagine that for the sake of
a global research, World Health Organization (WHO) needs to collect some medical records
from dilerent countries to analyze the behavior of a pandemic or disorder based on similarity
of data from dilerent regions. They make a committee, where each country has its own
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representative. Each hospital (pre-) encrypts its data and sends it to the committee, were the
committee can compute the target ciphertext and send it to WHO. Then WHO uses these
ciphertexts to extract its required information regarding the similarities. In this example,
though a representative may be interested in getting access to the data from its own country
but at the same time it does not want others to access this information (criticizing their
crisis-management, e.g.). Our 2-MCQFE scheme leads to a Ono-one or every-oneO situation
where if all the representatives (playing the role of authorities) collude to reveal their secret-
key in order to get access to the information from its country or others, it gives this privilege

to others as well.

Our 2-MCQFE scenario can be generally used in the decentralized data storage or
classibed search. In a decentralized storage system, there is a set of servers in charge of
data storage. Finding the similarities among data from dilerent clients allows for the data
classibcation during the storage phase which then can reduce the storage-space, retrieval
or search time.In this example, servers play the role of authorities. If the servers have no
interest in the privacy of stored data, one can use a self-enforcement methodology to avoid
them from revealing their 2-MCQFE secret-key. For example, each server has to encrypt a
valuable information, like its secret-key associated with a deposit, and gives a zero-knowledge
proof that they have encrypted this secret-key. Then the ciphertext would be stored on the
storage as well. This forces the server to care about the privacy of data and do not reveal its
2-MCQFE secret-key share.

1.3 Overview and Challenges

Here we give an overview of our 2-MCQFE scheme. The FHIP scheme of Lin (Lin-FHIP)
[26] is the main building block of our 2-MCQFE construction. In Lin-FHIP scheme, cty
associated with message, belongs to the groupG; while ct, associated with functiony,
belongs toG,. The decryption algorithm needs a discrete-logarithm (DLog) computation to
return !'x,y".

For the sake of generality, we divide the clients into two main categories calledz-side and
y-side clients. Where thei-th client on the z-side encryptsz;i, and similarly the j-th client
on the y-side encrypts the message; . To encrypt the messagez;, the client ¢ (on the z-side)
uses its secret-keyU; to build =¥ = (i||[a]1U;) where[a]; = H(¢) # G, is generated by the
random oracle providing the access to the same randomness for all the clients. Similarly, the
j-th client on the y-side builds y = (y; ||7;) holding its secret-key7; . Then seeingz{ and 3
as the message and function of Lin-FHIP scheme, they encrypt their messages and output
the results ascty, and cty, (res.). The decryption of Lin-FHIP ovgr Cty, and cty, returns
A =[aiy; + aUiTj]r . Now generating the functional-key sk= as[ f; Ui7j]., associated
with the matrix F = f; Jij , allows to recover’ f;j zjy holding A; for all i and ;.

This is so similar to the idea of the single-input QFE scheme of Lin 26]. We progressively
change this construction confronting the security requirements and challenges in the multi-
client setting, which can be summarized as follows:

FHIP in the Public-Key Setting. Note that the clients can not have access to the same
master secret-key of FHIP scheme, since the adversary can clearly breaches the security by
corrupting only one client. On the other hand, it is required that the decryption of Lin-FHIP
should be possible ovecty, (as the ciphertext for FHIP) and cty, (as the functional-key for
FHIP) for all 7 and j. We call this requirement as the mix-and-match property which can

be achieved if all the valuescty, and cty, are generated via the same master secret-key of
FHIP scheme. To satisfy these confRicting requirements, we propose a decentralized FHIP
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scheme where the master secret-key is shared among some authorities and the clients have
access only to the master public-key. Each authority, holding its secret-key, produces its own
share of the inner-product value, these shares then can be aggregated to obtain the bnal
inner-product value. The linear property of inner-product and homomorphic property of
Abdalla et al. [3] scheme (as the building block for Lin-FHIP), makes the generation and
aggregation of ciphertext-shares possible, without any interaction among authorities.

For the general functionality, a similar idea was introduced in [L5] to present a decentralized
FHFE scheme using spooky encryption and based on the LWE assumption in the common
reference string (CRS) model. Here we study an e"cient construction for the special case of
inner-product functionality based on SXDH assumption in the standard model.

Corruption Queries. In the security proof, due to the mix-and-matches amongcty, and cty, ,
one can expect that changingz? to z! should be involved with a hybrid over index ;. For
this hybrid, we use Matrix-DDH (MDDH) assumption to give the same structure to vectors
T; for j % ;% asT; =[bT ], while T} . is uniformly sampled from G,. This would allows us
to treat all the indices j % j* in the same way. While for index j* we can changer?y’. to
xilyjo*. On the other hand, we can simulate the corruption queries on the secret-key$; if
and only if 7; belongs toG, (and not 7} # Zq where in the above[T] ], is simulated). This is
because the samples for MDDH belong to the algebraic groufy, which are used to simulate
T .

Note that the similar reasoning works for changingyjO to yjl. While the previous strategy
(i.e., considering U; # G instead of U; # Zq) does not work here, since the output of
the random oracle is already in the groupG; and so the computation ofcty, for U; # G
is not possible. Instead, we extend the message{ and y as: zf = (ill[al1Ui||U}) and
yf = (4 IT; I718]2) where [3]; is generated by another random oracle, andl; and U
belong to G, gnd G1, respectively. We also need to modify the functional-key ask: =
 fiUGT, [ fi UT).

Putting together, our construction (see Fig. 1) can be abstractly presented as:
cty, = {Ctx, k}k & dFH.ENzi|lali||Uf) ti
#ctyj = {cty, 'kitk & dFH.KeyGerty; || ||Tj#ﬂ) '

ske = fi UL LD f UT)

Ctx’y =

where H, (¢) = [al1, H- (¢) = [ B]. are random oracles andk stands for the index of the
authority in the decentralized FHIP scheme dFH. And as we discussed/{ and 7; are vectors
respectively in groupsG; and G,.

Exponentially many labels with optimal communications.In the (single-input) QFE scheme

of Lin, the master secret-key of the underlying FHIP scheme is generated freshly for each
ciphertext. This means in our extension to the multi-client setting, the master secret-key

of the underlying decentralized FHIP should be sampled freshly and shared for each label.
Therefore; either we should limit the number of labels to polynomially many labels such that
the master secret-key of FHIP is shared in the setup phase, for all the labels. Or accept more
communications during the encryption phase to share the master secret-key for each label.
We avoid this issue, by increasing the length of the message and the dimension of secret-keys,
which then allows us to use a long-term master secret-key of the decentralized FHIP scheme,
for all the labels.
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2 Preliminaries

Notations. In this paper, x stands for the security parameter. The inngr-product of two
vectors X = (z1,...,zn) and y = (y1,...,yn) is denoted by !x,y" = = zjy. All the
algorithms are considered probabilistic-polynomial-time (PPT ). For an PPT algorithm A,
the notation y & A(x) means, on inputx the algorithm A outputs y. For a given set X,
z & X, stands for uniform sampling of 2z from X. Two strings or values are concatenated
by (4||f We debne[n] = {1,...n}. For a vector X = ( z1,...,xn) We often usex = (x;); or
x = {z}i, and |xX| = n stands for the dimension of the vector. The notation& is used to
show the indistinguishability of two distributions.

Debnition 1  (Matrix Distribution [ 14]). Let ¢,k # N with £ > k. We call Dgyx a matrix
distribution if it outputs (in polynomial time and with overwhelming probability) matrices in
Z5 % of full rank k. We dePneDy = Dy+1 k-

Debnition 2 (Dxk-Matrix Dile-Hellman Assumption [ 14]). Let Dy be a matrix
distribution. We debne the advantage of an adversanji for the Dy y-Matrix Dile-Hellman
Assumption in the following way:

AdvEPPY (k) = |PIAQ®, G [A]L[Aw]) = 1] ) Pr[A(1% G [A][u]) = 1]],

whereG=(G,g,p) & GGerf1®),A & Dyx,W & Z§,u & Zj. We say that the Dy x-Matrix
Dile-Hellman Assumption ( Dxx-MDDH) holds in group G, if for all PPT adversaries A,

there exists a negligible functionnegl such that: Advy-°f (x) * negl().

2.1 Functional Encryption
A functional encryption scheme is formally debned as follows.

Debnition 3 (Functional Encryption Scheme). A FE scheme for a functionality
f:M$F +2Z parameterized byp :=(M ,F,Z), is debned by four following algorithms.

- (mpk,msk & Setu(1%): where Setup receives the security parameters, and returns
a pair of master public/secret key. The public-key implicitly debnes the functionality-
parameter p.

- ct & Enqmpk, M): where Encreceives the master public-keynpk and a message\/ # M ,
and it returns a ciphertext ct.

- sk & KeyGerimsk F'): where KeyGenreceives the master secret-keynsk and function
F, then it returns a functional-key sk .

- Y ;= Dedct, skr): it receives a ciphertextct and a functional-key sk=, and returns , or
a value in the range off.

If in this debnition Encreceivesmsk instead of mpk, we say the resulting FE scheme is a
private-key FE scheme.

Correctness. For a correct execution of the above encryption systemDedct, sk= ) would return
fe (M) wherect & Enampk, M), sk= & KeyGerimsk F) and (msk mpk) & Setup(1%).

Here we extend the syntax of FE to a decentralized version which seems in public-key
setting from the client®s point of view. Comparing with the standard dePnition of FE, we
have added new parties callechuthorities where the encryption and decryption phase are
protocols among clients and authorities. Clients are the owner of data and authorities are in
charge of some computation holding their secret-keys.
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Debnition 4 (Decentralized Functional Encryption (dFE)). A FE scheme for a
functionality f: M$F +Z  parameterized byp := (M ,F,Z), is debned by four following
algorithms.

- (mpk, msk & Setup(1®, 1¥): where Setup receives the security parameters, and returns
the public parametersmpk and a set of secret keygk as msk= {ek }is«. The public-key
implicitly debnes the functionality-parameter p.

- ¢t & Enqmpk, msk M): is a protocol among a clint and the set of authorities. They all
receive the master public-keympk. The authority ¢ receives the secret keek and the
client receives the messag@/ # M . They communicate and return the ciphertextct.

- sk & KeyGerimpk, msk F): is a protocol among the owner of functionF' and the set
of authorities. They communicate and return a functional-key sk .

- Y = Dedct, sk ): it receives a ciphertextct and a functional-key sk=, and returns , or
a value in the range off.

IPFE and QFE. In this paper, we mainly distinct two special FE schemes. For inner-
product FE (IPFE), the ciphertext and functional-key are respectively associated with
vectors M= x and F' = y of the same dimension. And a correct decryption returnsfe (M) =

IX,¥" = joqnyTivi- FOr a quadratic-FE (QFE) scheme, the ciphertext and functional-
key are respectively associated with vector-pairsM = (x,y) # M "$M ™ and matrix
F=[fj]#F" ™, while a correct decryption outputs fr (M) = x"Fy =" ;i fj ziy;.

Function-Hiding FE (FHFE). Informally, the security of FE says that no information about

M should be leaked beyondfr (M). While in FH-security, the conbdentiality of function F
should be preserved as well. Note that in the public-key setting, getting the function-hiding
property is not possible. Having access to the public-key, the adversary can encrypt its chosen
messages and execute correct decryptions on these ciphertexts and a given functional-key.
Which then obtains a system of equations with enough number of equations to bnd the
unknown (here the unknown is the function F). Here we formally present the function-hiding

(FH) property.
Debnition 5 (FH-Security of FE). For a functional encryption scheme FE, a PPT
adversary A and a bit b & { 0,1}, we debne the gameNDEE,A(n) as shown in Fig. 2.
Where the oracle LREncon input (M°, M) outputs Engmsk A/°), the oracle LRKey on
input (F°, F1) outputs KeyGerimsk FP).

The condition (*) is that for any message-challenge(M°, M?) sent to the oracleLREnc
and for any function-challenge(F°, F1) sent to the oracleLRKey,

fro(M®) = fea (M)

We say that a FE scheme is FH-secure if for anyPPT adversary A, there exists a
negligible function negl such that,

AdVNDPE (1) = | PHINDRe o (1) = 1] ) PI[INDCg o (%) = O] | * negl(s)

Moreover, it is selectively FH-secure, if all the calls to the oracled REncand LRKey has
been done all together and before seeing the public-key.

The weak FH-security (wFH-security) is referred to the case that the constraints on challenges
are replaced with fro (M%) = fro(MY) = fe1(M?).
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Debnition 6 (dFH Security). The dFH security concerns the function-hiding property

of a dFE scheme and is debned similar to the FH-security where the adversary can issue the
following corruption queries:

QCor(A,7): the response is a secret-key sharek associated with authority .

And the other queries are modibed as follows.

LREncon input (M©°, M) outputs Endmpk, msk, MP) and also a transcription of the associ-
ated communications among the client and the authorities.

LRKey on input (F°, F1) outputs KeyGerfmpk, msk F°) and also a transcription of the
associated communications among the client (the owner of") and the authorities.

Security of FE (without Function-Hiding). In the above debnition if the adversary is
restricted to issue functional-keys F° = F!, we just say FE scheme is (selectively) secure.

Multi-Client Functional Encryption. Here we present an generalized syntax of MCFE
scheme. . Again, comparing with the standard depbnition of MCFE in [L2], we have added
new parties calledauthorities where the encryption phase is a protocol among clients and
authorities.

Debnition 7 (Multi-Client Functional Encryption). Let f be a functionality (indexed
by p), and Labels= {0, 1}$ or {,{} be a set of labels. A multi-client functional encryption
scheme (MCFE) for the functionality f and the label setLabelsis a tuple of four algorithms
MCFE = ( Setup KeyGenEnc, Deg):

Setup(1®, 1", 1¥): Takes as input a security parameterx, the number of clientsn, and the
number of authorities & (where for the standard debnitionk is zero), then generates
public parameterspp. The public parameters implicitly debne the functionality-indexp.
It outputs n secret-keys{ ek }ioqn], the authoritiesO secret-kepsk= {el{’}i%[k], the master
secret-keymsk= {ek };on] and pp.

KeyGelipp, msk F): Takes as input the public parameterpp, the master secret-keymsk and
a function F', and outputs a functional-key sk .

Endpp, ask ek, m;, £): It is a protocol among authorities and the clienti, where the client
and each authority respectively receive the secret kegk and el<*. They all receive the
public parameterspp and a label/ # Labels Moreover, the client receives the message
m, to encrypt. They communicate to output the ciphertexict; » (where ctjx might be a
set of ciphertexts indexed byt).

Dedpp, sk=,ct14,...,Cth%): Takes as input the public parameterpp, a functional-key ske
and n ciphertexts under the same labef and outputs, or a value in range f.

A schemeMCFE is correct, if for all x,n,k # N, functionality f, ¢ # Labels messagem;,
when (pp,{ek}ioun,ask msk & Setug1%,1",1¥), sk= & KeyGerfpp, msk F),and ctiz &
Endpp, ask ek, m;, £) we have

Pr[Dedpp7 SkF a{Cti,#}i%{n]) = fF (m17 s amn)] =1.

INDIb:E,A (K):

(mpk, msk) < Setup(1”)

o <_‘/L‘LREnc(é,@,LRKey(é,@(rﬁpk)
Output « if condition (*) is satisbed

otherwise output a random bit g.
Fig. 2: Game for adaptive FH-security
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Clients-Categorizing. To be clear, the correct decryption for a MCQFE scheme, returns
xT Fy wherex™ = (z1,...,20),Y = (¥1,...,ym) and a client may own any possible data
xi or y; . For the sake of generality, we debne two sides of clients:-side andy-side clients.
Where z; and y; are respectively assigned to the-th z-side client and j-th y-side client.

Security Notion. As we noticed in a MCFE scheme each slof has a dilerent secret key ek,
which can be individually corrupted. Comparing with the standard security-notion of MCFE

[12], in our dePnition authorities may also be corrupted, while the encryption-quires are only
issued w.r.t the clients (since they are the data owners and authorities just help them during
the computations/encryption). In the following, we formally debne the security notion of a
MCFE scheme. Hereid = {C, A} where C stands for the clients and A stands for authorities.

Debnition 8 (Security of MCFE). Let MCFE be an MCFE scheme and.abelsa label
set. For 3 #{ 0,1}, we debne the experimentND MFE in Fig. 3, where the oracles are depned
as:

Corruption oracle  QCor(id, 7): Outputs the encryption keyek of sloti, if id = C', otherwise
outputs el{‘. We denote byCSthe set of corrupted clients at the end of the experiment.

Left-Right oracle  QLeftRight(i, m?, m!, £): On a query (i,m?, ml, £), outputs
ctix = Endpp, ask elmm;' ,£) and a transcription of associated communications among
the client ¢ and the authority set.

Encryption oracle  QEnd3i, m;,¢): On aquery(i,m;,f), outputsct;» = Endpp, ask ek, m;, £)
and a transcription of communications among the client; and the authority set.

Key derivation oracle  QKeyGel(F'): Outputs sk- = KeyGertpp, msk F).

and where Condition (*) holds if all the following conditions hold:

b If i # CS: for any query QLeftRight(i, m?, mt, £), m® = m?.

D For any label ¢ # Labels for any family of queries { QLeftRight(i, m?, m?, £) or
QENdi, mi, £)}iqnycs » for any family of inputs {m; # X} ;¢ for any query QKeyGeliF),
we dePnem? = mit = m; for any slot i # CS and any slot queried toQEnqi, m;, £), we
require that: f(m% = f(m?) wherem?®=(m®, ..., mb) for b#{0,1}.
We insist that if one index ¢ # CS is not queried for the label, there is no restriction.

The weaker versions of the security are debned as-yy-IND M¢FE

we donOt have their corresponding following restrictions), where,

(xx,yy are empty where

D When xx = one for any slot i # [n] and ¢ # Labels the adversary is limited to exactly
one encryption/challenge query on each{i, ¢).

b When yy = sel the adversary should output the challenges at the beginning of the game,
and it does not have access to the oracl@LeftRight after that. This case is referred as
the selective security.

We debne the advantage of an adversary in the following way:
AVHEEE WP (1,1, k) = éPr[xx-yy-IND MCFE (1, n, k,A) = 1]
) Prixx-yy-IND YFE(x, n, k,A) = 1]%.

A multi-client functional encryption scheme MCFE is xx-yyBIND secure, if for any PPT
adversary A, there exists a negligible functionnegl such that: Adv?\‘,]xc',iéj',i\") (k,n, k) * negl(k).
In this paper we mainly work with one-sel{ND security.
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IND ¥5(k,n, k, A)

(pp, msK) + Setup(1”,1™, 1%)
a ¢ AQCo@®,QLefiRight (4449, QEnc(448,QKeyD@ (1 )
Output:  « if Condition (*) is satisbed,

or a uniform bit otherwise

Fig. 3: Security games for MCFE
2.2 A Review on the FHIP Scheme of Lin[ 26]

The FHIP scheme of Lin [26] (Lin-FHIP) plays a very important role in all our constructions.
She presented an elegant FHIP scheme from IPFE scheme in a double-layer way and based
on SXDH assumption. Informally, for the encryption one encrypts the message by th&nc
algorithm of the inner-layer IPFE and then applies the KeyGenalgorithm of the outer-layer
IPFE (see Fig. 6). Similarly, to generate the functional-key, one needs to put an outer-layer
Encover an inner-layer KeyGen Here we recap the FHIP construction of Lin [26] in Fig. 5. Let
G=(4q,91,92,G1,G2,Gt,e) be the description of a bilinear map wheree : G1 $ G, + Gr.
The IPFE schemelP; = ( Setup, Eng, KeyGen,Deg) for ¢ = 1,2 is instantiated based on
DDH assumption and the encryption and decryption algorithms work in G; space. More
precisely, the underlying IPFE schemelP; is instantiated with the scheme of Abdalla et al.
[3] as follows, which we call it as ABDP-IPFE:

(pk;, sk;) < Setup(1™,1™), Enc;(pk;,x) = [ r,x + rski]; = [ct];
KeyGen(ski,y) = ( —(y,ski),y) = sk, Dec;([ct];, sky) = DLog[(ct, sk;)];

Fig. 4: ABDP-IPFE [ 3]

Here we emphasize on properties of their scheme which we widely use in our constructions.

Property 1. In ABDP-IPFE scheme,

i. As long as we donOt need to computeLog, the message can belong to the sefq or Gi.
On the other hand, the function may belong to the setZq or G;, j %.

ii. Under the same randomness, it is key and message homomorphic. NameBndpk,, X1;r)+
Endpky, x2;7) = Endpky + pKy, X1 + X2;7).

While Fig. 5 presents a more detailed version of Lin-FHIP scheme, we mainly use the
compact form of Lin-FHIP presented in Fig. 6.

Theorem 1 (Lin [ 26]). If IP; is selectively secure fori = 1,2, then FHIP scheme of Lin
is selectively-wFH-secure.

Lin and Vaikuntanathan [ 27] s‘howed’ that any FHIP scheme with weak function-hiding
(wFH) security can be generically OliftedO to a FHIP scheme. Where the vector is encrypted
asx||0 (similarly y asy||0 ) by a wFH-secure IP scheme wher@® is a zero-vector of dimension
n = |X|.
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Setup(1”):

- run (skg, pk,) < Setup,(1%,1") and (ske, pk,) + Setup,(1%,1"*1).
Return msk = ( sk, sko) and pp = ( pky, pky).
Eng(msk, x):

- run ct < Enci(pky, x) and CT < KeyGen(ske, ct). Return CT.
KeyGer{msk y):

- run sk < KeyGen (ski,y) and SK « Encz(pk,, sk). Return SK.
Ded(SK, CT):
Return Dec(SK, CT)

Fig.5: Lin-FHIP [ 26]

(ski, pk,) < Setup, (1%,1™), (ske, pk,) « Setup,(17%,1"*T)
CT = KeyGen(Enci(x)), SK= Enc(KeyGen(y))
X € ZgV G,y € ZqV G2, as long assk; € Z,, for i =1,2.

Fig. 6: Compact form of Lin-FHIP

Property 2. By applying the LinOs construction over the scheme of ABDP-IPFE one can
verify the following properties.
i. The ciphertext is in the form of,

CT =()! sk,cty",cty) where cty = Enc(pk,X)
and the functional-key is as,

SK = Enc(pk),)! sk, y";r)||Enca(pks.y;r)
= Ency(sk,)! ski,y";[rl2)IENG(pk3, y;7)

ii. Applying the outer-layer does not change the output of the inner-layer and it is just to
preserve the security ofy (while the inner-layer preserves the security ofx). Namely, by
applying Enc (x) over KeyGen(y), the output of the inner-layer is !x,y". While the output
of the outer-layer, by applying CT over SK is also!x,y".

3 A 2-Input QFE Scheme

Here we present a (2-input) QFE scheme which is also the sketch of our MCQFE scheme (see
Fig. 7), assisting us to explain the requirements for the multi-client setting. In this construction
FH = ( FH.Setup FH.Enc, FH.KeyGenFH.Deq is Lin-FHIP scheme wherecty, # G; and
cty, # Gy. The decryption algorithm FH.Decin similar to the decryption algorithm of Lin-
FHIP, except that, the DLog-computation is ignored. Note that our general construction is
using a FHIP scheme in the encryption stage which means the construction gives a private-key
QFE.

Correctness:

A =[fij awillollali||UF, i 01T | 778" Tr jﬁ)[fi,i ziy + afij UGT + fij U'TBlr
B=[)aXfij UT) Xfi UTBy C= Ay aB=[ fijaziyl



MC-QFE from FH-IPFE

Setup(1”®, n,m):

b sampleU;, T} € Z3' 2 and U}, T} € Z¥' 2
for i € [n],j € [m]

D run (msken, ppgy) < FH.Setup(1”)

output msk= (Ui, [Uil1, [Tjl2, T}, msken)s, ;-

Eng(msk, x,y):

D samplea, BT + Z§ 2

P setct, «+ [a]i and ctg «+ [Bl2.

b runct,, + FH.Engmskey, z;||0||al;||U})

for i € [n] and 0 € Z} 2.

D runct, « FH.KeyGer(msken,y;||0||T;||T;8)

for j € [m]and 0 € Z2' *.

KeyGer{msk F):

Output skr where,
! I

ske=([ ., fisUiTile,[ , fisUITh).

Dec(ct,,y, Skr, F):

- pars Cty,y as (Cla, Ctg, {Cly; i, {Cty, }5),

and skr as (sky, sKy)
B run A; ; < FH.Deq(cty, , Cty, )i
for i € [n], j € [m].
D setB = e(Cta,sKi?) - e(sK" *, cty)
b computeC = i A;j-B

Output logC.

13

Output cty, = ( Cta, Ctg, {Cty }i, {Cly }5)

Fig. 7: Our (2-input) QFE scheme (the sketch of our MCQFE scheme)

This construction can not handle corruption or labels and it just supports two clients: one
holds the whole vectorx and the other holdsy °. Later we extend this construction to a
multi-client setting, thus here we ignore the security-proof.

To extend our (2-input) QFE to the general multi-client setting, each ciphertext cty, or
cty, (associated withctyy ) should be assigned to a separate client. As it was mentioned, we
distinct the clients by two sides; z-side andy-side. But this categorization is just to explain
the scheme and does not make any limitation on the functionality, as one client can have
data on both sides or we can combine several clients in one client.

In a multi-client setting, the client ¢ on the z-side (similarly, the client j on the y-
side) should be able to computecty, (similarly cty, ) only by its own secret-key. Therefore
specibcally for our QFE, the clienti on x-side should have access t&;, a and msk-y. Since
Ui is not appearing in other parts we can consider it as the secret-key for the client. On the
other hand, a has to be the same for all the clients on ther-side, but since the only term
involved with « is [aUj]1, and U; # Zq is the secret-key of thei-th client, it is possible to
replace[e]; with a random oracle such that all the clients can share the same randomness
(i.e., H(¢) =[ a]1, which is a standard technique to share the randomnes9[12])

Regarding the secret-keymsk-, the same technique that we used for sharingx can not
work here, as in the FHIP scheme we neethsk-y # Z, (and not in G;).

Another point is about mix-and-match property among dilerent values of cty, and cty, .
This property simply says that FHIP decryption over (cty,,cty, ) should be possible for any
i # [n] and j # [m] (over the same label). This is an essential requirement for our QFE
scheme and any modibcation of FHIP scheme should preserve this property.

4 Public-Key FHIP Scheme in Decentralized Setting

To go around the mentioned challenges regarding the master secret-keypsk-y, we present a
FHIP scheme such that it seems in public-key setting, from clientsO point of view, while it
still preserves mix-and-match property.

5 thus, we call it 2-input rather than 2-client.
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4.1 Single-Authority FHIP (warm-up)

We introduce a new party called authority to the underlying FHIP scheme. Introducing this
authority will somehow change the FHIP from private-key setting to the public-key setting
(w.r.t the client-view). While the authority is in charge of some computations holding the
secret-key, the client, as the data owner, has access only to the public-key. Fi@ depicts
our single-authority FHIP scheme. Here I P, = ( Setup, Eng, KeyGen, Deg) for ¢ = 1,2 and
1P} = (Setup;, End, KeyGe#, Ded)) are ABDP-IPFE scheme respectively in groupsG; and
G». As one sees the dilerence with a usual FHIP scheme is that in an authority-based IPFE,
the Enc and KeyGenalgorithms are protocols between a client (data-owner) and an authority
(secret-key owner).

The underlying idea is as follows. Basically, the goal is to generate the same ciphertext
and functional-key of Lin-FHIP without revealing x or y to the authorities. By Property 2
the ciphertext of Lin-FHIP can be written as,

(! sk, cty",cty) where cty = Enc(pky,X) Q)
and the functional-key is as:
EnG(pk3,)! ski,y";)lIEnG(pk;,Y;r) = Ency(sk,)! ski,y"; [rl)IENG(pks, y;7)  (2)

Now for the encryption, the client just needs to publish cty. The authority holding sk, can
compute the target ciphertext (Eq. (1)).

For the functional-key generation, the client publishesct, & En(‘,‘;(pk\,,y) and (ctoy, Ct1y) &
Encz(pk%,y; r) where the former is used to generate the brst part of the functional-key and
the latter for the second part. The authority holding sl{f & KeyGeé(sK,, sky) as its secret-key
and given ct,, can now compute[!sky,y"]». Finally, it uses ctoy =[r]> and its secret—keyslég
to encrypt [!sk;,y"]> under the same randomness that the client has used. Therefore, it can
e"ciently compute the functional-key (Eqg. ( 2)).

The reason that we needP to work in the group Gy, is that in our construction Ded; is
computed over some data that their inner-product value can be large and so the decryption
would fail (since having small inner-product is a requirement for the ABDP-IPFE scheme B]).
Therefore, the idea is to useIPg over G, and Decg is the decryption algorithm of ABDP-IPFE
scheme without discrete-logarithm computation. This means the output of the decryption is
in group G, which is also compatible with what we need inKeyGeripp, ek, y).

Correctness. By the correctness of Lin-FHIP (Fig. 5), it is enough to show that CT =
KeyGepn(Eng(x)) and SK= Enc(KeyGen(y)). For CT, the relation is clearly true. For SK,
we haveskK = Engy(sk,) sk ctoy) = Enc(pk, sk r). Thus,

SK = (Ency(pk3,) sk 7),ctiy) = Enc(pky,)! ski,y'|ly;r) = Enc(KeyGen(y))

Security Properties. One can verify that if the adversary does not have access tek (i.e.,
Authority is not corrupted), our single-authority FHIP inherits the FH-security of Lin-FHIP.
4.2 Decentralized FHIP (d-FHIP)

To increase the security, we are interested to relax the condition Ouncorrupted authority® by
adding more authorities; such that if at least one of the authorities is uncorrupted (while it
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Setup(1”):

- run (sk, pk;) < Setup,(1%,1™) and (sko, pk,) < Setup,(1%,1"*1).

- parse skz, pk, as skd||ski € Z, x Z2 and pk3||pk; € G2 x G%

- run (sk,, pk,) < Setup,(1%,1") and sk, < KeyGen(sk,, ski)
Return ek = sk||sk, as the secret-key for the Authority, and pp = ( pky, pks, pK,).
Enc(pp, ek, x € Zg):

- Client(pp, x): sendsct, < Enci(pk,, x) to Authority .

- Authority (skz, ct;): returns CT where CT «+ KeyGen(sko, ct.)
Return CT
KeyGer(pp, ek,y € Zg):

- Client(pp, y): sendsct, + Enc,(pk,,y) and ct, to Authority where

ct, = ( Ctoy, Ct1y) + Enca(pks,y;r) and ctoy, = [ r]2.

- Authority (sk,, ct,): computes sk = Dec,(sK,, ct,) = [ (ski,y)]» and

then computes sk «+ Encx(sk3, —sk; ctoy).
Return SK = ( ctoy, sk, ctyy)
Deq(SK,CT): Output Decy(SK,CT)

Fig. 8: Single-authority FHIP

is still curious), the FH-security notion is still satisbPed. Note that in our single-authority
FHIP scheme the secret-key ofAuthority is Pxed for all the ciphertexts. Thus, one can use
a secret-sharing protocol to share the key among. authorities, once in the setup phase.
Then each authority should compute its share of the inner-product value holding only its
secret-key share. Putting all the inner-product shares together will generate the desired bnal
inner-product value. The underlying idea is similar to our single-authority construction while
the ciphertext and the functional-key can be computed in a decentralized way, thanks to the
linearity of inner-product and homomorphic property of ABDP-IPFE scheme [3] (Property
1). The resulting construction is depicted in Fig. 9 wheren (maximum number of authorities)
equals the length of the message-vector (independent of the number of clients).
Correctness. By the correctness of Lin-FHIP (Fig. 5), It is enough to show that CT" =
KeyGen(Ena(x)) and SK*= Enc(KeyGen(y))

For CT*
% % %
CT =(  ctig,cty) = ()  !skpi,cCty",cty)=(  ct cty)
i# i i
=) sk, ct",ct) = () sk, ctc”, cty) = KeyGen(Enci(x))
i
| |
For SK* we know that = ; sk = ;Isky,y" = Isk;,y" and sk’ = Enc(sk;,) sk;ctoy) =

Enc(pk3, , sk ;) therefore,

% % #
sK'=  Enc(pky,.) skir)= Endpkd,)  skir)= Endpkd,)! skiy"ir)
i i [
where the second equality is due to the homomorphic property of underlying IP scheme. We
also have, (ctoy, ctiy) = Endpks,y; 7). Thus,
%

SK=(ctoy,  sK' ctiy) = Enc(pky,)! sku,y"lly;r) = Enc(KeyGen(y))
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Setup(1”):

- run (skg, pk;) < Setup;(1~,1") and (ske, pk,) “ Setup, (1%, 1"*1).

- run {ska;}; < SecretSharésk;) such that sk; = | ; SKai- |

- run {skz,;};  SecretShargsky) such that ske =~ ske; =~ SK),[[sk5 ,.

- parse skz, pk, as skd|[sks € Z, x ZI' and pkj||pk3 € G2 x G%

- run (sk,, pp,) < Setup,(1%) and set sk, ; = KeyGerj(sk, Sky;).
Return pp = ( pKky, pk,, pK,), ek; = ske,i||sK, ; as the secret-key fori-th authority for i € [n] .
Enc(pp, {eki}:, x):

- Client(pp, x): publishes ct, where ct,. <+ Enci(pky, X; ')

- Authority ;(ek;, ctz): returns CT; where CT; < KeyGen(skz,;, Ctz) = ( —(sko,;, Cts), Ct)
Return CT = {CT;}..
KeyGer(pp, {eki},y):

- Client(pp, y): publishes ct, = Enc,(pk,,y) and ct, = ( ctoy, Ct1,) + Enc(pk3,y;r),

where ctoy = [7]2.
- Authority ; (ek;, ct,): computes sk; = Decy(sK, ;, ct,) = [ (Sku,i,¥)]> and
sk, + Encz(skd ;, —ski; ctoy) and returns SK; = ( ctoy, SK;, Ctyy)

Return SK= {SK;};
Ded({CT;}:, {SK;}i):
parse SK; as (ctg,,sk'i,ctly) and CT; as (&tm,ctw)
set SK' = (ctoy, sk, cty,) and CT' =( , cto;, Ct)
Return Dec(SK',CT').

Aggregation:

Fig. 9: our d-FHIP scheme

Remark 1. Note that in our d-FHIP, the maximum number of authorities is n. We emphasize
that one can simply extend our construction to any arbitrary maximum number & of
authorities by adding zeros to the message as||0 # Zg and random values to the function
asy|[r®# Zg. Such extension may have some advantage in MCQFE where the clients can
play the role of authorities.

Another point is that, since all the operations for the aggregation are linear, our con-
struction could work algo with a threshold sharing of sk; and sk, instead of an-out-of-n.
Indeed, instead ofsk= " sk, we would havesk= " );sk where ); is the i-th Lagrange
interpolation coe"cient for the appropriate subset.

Security Analysis. Here we claim that as long as there exists at least one uncorrupted
authority called %, our d-FHIP scheme is dFH-secure. Obviously, knowing sharesk for

i % i%, can not directly help the adversary to break the security since by the security of
secret-sharing, it can not recoverek-. Rather, it may use the inner-product share ofi®
(available via encryption queries) to get information about x or y. Intuitively, the parts
which may leak information are mainly cty, ct, and ct,, sl{i .. The latter is due to the fact
that leaking !sk; ;~,y" can totally reveal y, since the adversary already has access to the
values!sky; ,y" for i %1% via corruption queries. By the security of IP%, no information about
y is leaked viact, as long as the condition!sk;;,y') y°" =0 is satisPed (e.g., by allowing
maximum (n-1) independent vectorsy?) y° and (n-1) authorities in the game). Moreover
we discuss that in the adversary point of view, the information cty and ct, respectively
are equivalent with the ciphertext and functional-key of the Lin-FHIP scheme where the
secret-keys associated with the inner-layer and outer-layer are respectivelsky i~ and sky; «.
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From there, we can reduce the security to the FH-security of Lin-FHIP. The sequence of
games is summarized in Fig10.

Go sK,.. + KeyGeny(sky,Ski,;) ctz « Enci(pky,x°) real game
ct, <+ Enc(pk,,y°) ct, «+ Enca(pk:,y°;r) b=0
sk, ; = KeyGen(sky,,ski:) ot 0. security of 1P,
G Y 1 ot Encl(pk%,xo., r) associated with
cty, < Ence(pk,,|y~ ) cty < Enc(pks,y°;r) ok,
G sK, . = KeyGeny(sk,,ski;) Cte < [r'" o, Skia- EnC1([Sk1,i*]1,; ) FH'S_etc‘:j”ty_th
2| ct, + Enca(pk,,y?) ! . 1 associated wi
v v cty < [r' o, SKl2- EncZ([skzji*]z,; 7) | (Skui-,Ske,iv)

Fig. 10: overview of games for our d-FHIP scheme

Theorem 2. If Lin-FHIP scheme is (weakly/fully) FH-secure, Our d-FHIP scheme in Fig. 9
is (weakly/fully) selective dFH-secure, as long as there exists at least one honest authority
and the condition !sky;,y*) y°" =0 is satisbed on all the indicesi and key queries.

Proof. We assume thei®-th authority is honest, namely the simulation samples:® from [n]
as the honest authority, at the very beginning of the game. If at some point the adversary
corrupts it, the simulation aborts. The probability that ® is the honest authority is non-
negligible and thus the reduction works with non-negligible probability (resulting in breaking
the SXDH assumption with non-negligible probability). We start with the real game when
the chosen bit isb = 0, while the last game is the real game associated witth = 1. The
adversary A is the attacker trying to distinguish two adjacent games. Note that based on
the security notion, in the simulation of encryption, we have to simulate the communications
among the client: and all the authorities, this means we also have to simulatect, (while cty,
cty are already part of the output of the protocols).

: is the real game in dFH-security (DePnition 6) when the chosen bit isb = 0.

: is similar to the game Gy, except that in ct,, y° is replaced with y!. We reduce the
indistinguishability of Gy and G, to the security of IPFE scheme I P§. Since all function-
challenges are issued at the beginning of the game, the simulator can,samgdlek i }i such
that: !sky;,y*) y°" =0 for every index i and key queries, and then set | sk = sk.
The simulator simulates gamesGy or G; for A by running the real algorithms, except for
the simulation of sK‘f’i and cty, where it sends functional-key queriessky i, and the challenges
(y°,y?) to the challenger of IPFE schemelP5.
: is similar to the previous game, except that, inct, and cty, the valuesx® and y° are
respectively replaced withx* and y?.
The transition from G; to G, relies on the FH-security of Lin-FHIP scheme when it is
associated with keyssk; ;- and sky; «. In this transition we are using the following facts which
are thanks to the homomorphic properties of ABDP-IPFE scheme 8] (see Fig.4).

# i
Enci(pky, ;7" = Enci( sk, x;r =[r" skyili &Enci([ski-]1, X; )
i i&i*

# #
Enc(pky,y;7) = Ene(  sky,y;r)=[r skl &Enc((sky;.l2,y;7) ®)
i i&i*
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The simulator, simulates gamesG; or G, for A by running the real algorithms (on the
concerned inputs), except forCT;- = (ctg,«, Ctx), SKi~ = (ctoy,slq#*,ctly):

b it samples all the keys except,sk; i~ and sk «.

P simulation of CT;.: when A submits the challenge(x°,x1), the simulator sends it to its
challenger and receivesH.Enq((sky, -, skoi-), x®; 7% = ( ctoi -, [r"1, k) where FH stands
for the Lin-FHIP scheme, and by the construction of FH:

Ency(skyi«, X% = (11, k), ctoi- = ! skej-, ([r1, k)"

|
Then it sends CT;« = (Ctoi~, Ctx) to A wherecty = ([71, [ 4. Skii]1 &k)).
P simulation of SK;.: when A issues the challengdy®,y?'), the simulator sends it directly
to its challenger to receiveFH.KeyGerf(sky i -, Sko,i <), y?; r) = ([ 712, h¥, b, where by the
construction of FH:

EnG(sK;-,)! skui-,y™"r) = ([rla, 1), Enc(skg;-,y"r) = ([ ]2, "}

!
Then it simulates ct, and sk’ as cty = (ctoy,Ctyy) = ([7lo,[r g~ sk%yi ] 42" and
sk’. = n*. And sendsSK;- = (ctoy,sK’, ctiy) to A.

This is now the real game forb=1. .-

Theorem 3. If in our construction we replace x with x]|0 and y with y||r for a random
value r (and extend the dimension of keyskl,sk% to n+1). Then, Theorem 2 holds without
condition !sk;;,y!) y°" =0.

Proof. By this transformation we can Pnd the keyssk;; such that lyY||rt) yO||r° sky;" = 0.
Because we haver(n +1) keyssk;; as unknowns andn equations associated with maximum
n linearly independent vectorsy?!) y°, which totally gives n? equations. -

5 2-Step MCQFE

In this section we present a 2-MCQFE scheme based on the d-FHIP scheme. Basically, we
consider the 2-input QFE scheme (Fig.7) where FH is replaced with our d-FHIP scheme
(Fig. 9) denoted asdFH. We extend such 2-input QFE scheme to a 2-MCQFE with(n + m)
clients wheren and m are respectively the number of slots of vectorx andy.

Our 2-MCQFE scheme is presented in Fig.11. Here H, : Labels+ G} % and H. :
Labels+ G3 * are hash function modeled as random oracles. The secret-kek, is debPned
as ek¢x when the concerning client is on thez-side and it is ek.y when the client is on the
y-side. Note that by Remark 1 we consider the number of authorities to be an arbitrary
integer ¢ = poly(x) (i.e., one needs to apply the changes from Remark). Finally, the
decryption algorithm dFH.Decis similar to the decryption algorithm of our d-FHIP scheme,
except that, the DLog-computation is ignored.

Intuitively as the conbdentiality of both messagesz; and y; should be preserved, we need
a kind of symmetric structure. Namely, all one needs to do to preserve the privacy of;, the
same methodology should be done fog; . This is possible by operating on groupsG; and
G, where the pairing allows us to combine/mix the results. In fact, this is the underlying
idea for the Lin-FHIP scheme which is so connected to the requirement for a QFE scheme.
Here we additionally have functional-key sk= and random oraclesH, and H- which we try
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Setup(1”):
b sampleU;, T; & 73 2 and U;, T, & Z% 2 for i € [n], j € [m].
D run ({ek; }iwgs, PP) < dFH.Setup(1¥)
Return pp, ask= {ek;},upy, msk= (eki.,ek;,):; and
ekio = (Us,[U;lh), ekjy = ([ T;]2, T;) as the secret keys respectively for
the z-side and y-side clients.
End(pp, ask, eky, my, £):
DsetH,(f)=[a]1 =€ G} 2, Hps({) =[Pl € G2 *, and 0=(0,0).
D if this is a x-side clients: run ct,, , < dFH.End(pp, ask my||0|[aUs||U})

b if this is a y-side client: run ct,, , + dFH.KeyGer(pp, ask my||07||T%||T;.8)
Return ct,, ¢ OF Cty, .
KeyGer{msk, F ):
Return ske = (sky,sky) = ([ Zfi;UiTi)2, [ 2 fi ;Ui Ti1).
Ded((cCt; ¢, cty, )i, F,SKr):
D run A; ; + dFH.Ded(ct,, ¢, cty, )7 for i € [n], j € [m].
D setB « e(Ha(6),sK ) - e(skf *, Hp(6)) and C = A ;- B

1,7

Return log C.

Fig. 11: our 2-step Multi-Client QFE (2-MCQFE) from decentralized FHIP

to keep this symmetric structure for them as well. More precisely, the output ofH, is in
G, and its associated part ofsk= is sk which belongs toG,, similarly about H- and sl{‘.
The main challenges in a multi-client setting are the corruption-queries and the separate
encryption queries on each slot where mix-and-match over them (possible thanks to the
underlying dFH scheme) should not leak additional information. Since in our construction
ciphertexts are indexed by labels, and indices or j, one can expect that the sequence of
games includes hybrids or¥,i,j. Slightly more in details, in the security proof, to show that
one can (indistinguishably) change a message® to %,

1. at brst, a hybrid of games over label< is debned such that every time we change:?/‘o to
* for the current label ¢ = ~ while for all other labels nothing would be changed;
2. this discussion over labely also needs a hybrid on indexi, where every time for a specibc
index i* we changez;? to =%
3. bnally such change also needs a hybrid over indexto show that in hybrid ;® we can
(loosely speaking) changez:?/f)yj#? to :cio/flyj#‘B while for j % j® nothing would be changed.
For 1., by MDDH assumption we change the structure of the random-oracleH; such that
for every label, except~, it has the same form. This allows to change the challenge bit fory
(by relying on dFH-security as well), without being interrupted by other labels ¢ % ~. For
2., we change the secret-key/; -, which makes it possible to change the challenge bit foi®
(again by relying on dFH-security as well), without being interrupted by other index i % ®.
For 3., by MDDH assumption we change the structure of7] - such that for every j % %, it
has the same form. This allows to change the challenge bit for combinations involved with
7. We discuss details in the security proof.
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Game Description . .
Go cty, < dFH.Eno(ppey, msken, 27((0||ali||U])  skr = fi3UiTile, [ fisUITH)
cty, < dFH.KeyGer(mskew, y;(0[|75|7;6) Ha(€) = [ a1, Hp(0) = [ Bl
Justif. SXDH
Go., oty = dFH.Eno(ppFH,mskFH,xgHOHan) L<y o= ri@® (F 5
dFH.End(ppeyy, msken, z;|0||l@l;)  £> v ay l=rx
Justif. ( dFH-security
} dFH.Enc(pp,, msken, z1][0]jali) £ <~ '
o Cty, = dFH.Eno(ppFH,mqu:H,mHan) L= ~,i=14 oo @ 0~
e dFH.Eno(ppey, msken, 22(0||al;) L>yV(L=~,iF i) o 0=~
cty, + dFH.KeyGer(| yJ|la/(a, o) (2P — i)y |1T))
Justif. . SXDH
_ by g7
Go.y.i*.j* T; = T, iy
Justif. dFH-security

(
AY .

} dFH.ENK(ppg, msken, |27 (0]lal ) £ < vy

ct= dFH.End(ppey,, msken, | 21 [|al|al;
dFH.Eng(ppey, msken,
Go..ix.+ } dFH.KeyGer(mskew, ys)lac o3||T;) J<jx
ety = dFH.KeyGer(msken,| 7|l 71175 ) j= g
dFH.KeyGer(msken, g8/ (@, @ ) (- — 23R lITy) 4 > jx
Uir = a/(a,a,) - (277 = 2{7)y7 - b/(b, Tj+) + Ui-

T

1 f
3 - : 1 07y, O : :
Co..ir SKr = mpasi iUy + a/@,ay) o0 fir (@l — 2y o fie iU T

Justif. , dFH-security
dFH.Enc(ppeyy, msken, 27 [[0]|lels) ¢ <~

6 |Gy, = ) = . H j
%o %07 e Enlppoy mken. a0ty ¢ >4 S = SFHHKeyGermsien S| [O]IT)
{ ! .
Go"‘/ Skf = %[m],i%[n] f17 U:T; I I
o Gty AFH.ENA(ppgy, mskew, 2F[[0][f Ui [[U))  ske = ([ fis[Ui[T3l2, [ fisUiT}h)
1
cty, + dFH.KeyGer(msken,y9/0||T5|T}8) Ho()= o, Ha()= B
! !
& Ctyy < dFH.ENC(ppey, msken, zF[0|als||U}) sk =( fi,UiTjle, [ fisUiTh)

ct, « dFHKeyGertmske, |42 | OITIITI0)  Ha()= o Hs() = B

Fig.12: Overview of games for 2-MCQFE. Heremsk-y = ask

In the following theorem we prove the security of our 2-MCQFE for a weaker security
notion where the constraint X} Fyo = x] Fy; is replaced with x] Fyo = X] Fyo = x{Fy1
(referred as the weak security). We later give a transformation to turn back to the standard
constraints.

Theorem 4. If dFHis dFH-secure, then our 2-MCQFE scheme is weakly one-séiND secure.

Proof. The proof proceeds via a sequence of the games which are summarized in Fig. At
brst we debPne a hybrid over labelg where two such adjacent hybrids are indistinguishable via
a hybrids over index i, and similarly two adjacent hybrids (over i) are indistinguishable via
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a hybrids over index j. More detailed, we pass through the games (Figl2) in the following
order: Gy RA G nA Gz, where the transition from Gy to G, changes the message? to z} for

all the labels and % includes the following hybrids on the labels. Which means each time we
changex? to z! associated with labely=1,...,Q where @ is the number of labels:

Go1w Ghy...~...Gog ~ Ghg
where for label v, the transition from Ggo, to Gj o, changes the message? to =} for all
indices . That is, each time we changez. to 2. for index i®* = 1,...,n. Thus in the above
sequence;~ stands for the following hybrids on index .
j i
Go.ea ~ Gg.%.‘l. e Ggﬁ’/ol oo~ Gogen Gg.%.n e Gg#%.n
where for label~ and index %, the transition from Gg g i~ t0 Ggfi/o.i*, loosely speaking, changes
x0.yP to zf.y? for all the indices of j (more precisely, it changese{. to z}. in the leakage
from mix-and-matches depending on the indiceg, j). Meaning that, each time we change
a.yl. to xl.yf. for j® =1,... m. Thus in the above sequencey~ includes the following
hybrids on index j:
GO.%.i*-lWGg.%.i*.l s Gogpirm WGg.%.i*.m

The transition from G; to G, proceeds similarly to changeyj0 to yjl. Here we precisely

describe each game.

: is the real game associated with bith = 0.

: is similar to its previous game, except that, the random oracle querie$, (¢) associated
with labels ¢ %~ are answered with the same structurdrza ], for fresh randomsry and a
Pxed uniformly chosen vectora’ # Zg 2. While the random oracle for £ = ~ is answered
by a uniformly sampled [asd; # G7 2. To prove the indistinguishability of these adjacent
games, we rely on the MDDH assumption in the groupG;, w.l.g for the simplicity one can
consider the indistinguishability of Gy and Gg ;.

By Random Self-Reducibility (RSR) of MDDH assumption (Lemma 1 in [14]), we have,
(9% {* " Yioqor) € (97 . {9% Yuqoy) Wherea Ry & 28 2,1y & Zy.

The simulator receives the challengefég'ilL ; {glf[ }#qqp) from the challenger of RSR-MDDH.
For ¢ %1 it sets [as]; = ¢, and for £ = 1 it samples[os]; & GY 2. Now if by = a g, it
simulates the gameGy ; otherwise it simulates the gameGy. In fact, it simulates all the
queries based on the real algorithms (w.r.t the new values). Since all the queries involved
with «, can be answered viga];, this is a correct reduction (note that U; # Zq, and thus in
cty,, aU; can be replaced with[aUi]1).

: is similar to the previous game, except for the simulation ofcty, , cty, :
D in cty,, for £= ~,i = i* we replace the message-parKis = 2°||0 with X7, = 2}||a,
Bin cty, forall £, 7, Y4 = 4|0 is replaced with Y%, = yPlla/!a, aw'(2f. ) =h)y.

We emphasize that for/ %~ or i %% message is not changed i.eX;x = Xf‘# Also note that
in any case, the other parts of the message, namelyU ||Uf and T; ||Tj#,3 are not changed.
Now, one can verify that:

Xy &Y = Xip &p "i,j,¢ (4)

we consider dilerent cases:
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D for ¢ < ~, i %i*(same reasoning for all¢ # [Q], and i % :®):
Xig &y = 2|0, yP110" = 2ty = 12f]10, yPlla/!a @1y ) o)y = Xy &Vl
b for ¢ > ~, i = i® (same reasoning for! < ~, i = %):
Xig &y = 12010, 50110" = 2Py = 120110, ylla/!a, @1y (2. ) ol )y = Xy &Vl
b fort=~,i=i%
Xip & = 127110,50110" = alyf = latllas, yflla/ta e (af. ) ak)yl = Xy &Y
i# IE:; & )Y Ti Y TillQy , Y / ay L= i« )Y i#

The relation X,## aY# = Xiu &Yjs is exactly the required constraint on the challenges
for dFH-security of dFH Thus, by relying on the dFH-security of dFH, gamesGg o i« iS

indistinguishable from its previous game. Note that in this reduction all other queries are
answered by the real algorithms, and corruption on the authorities can be simulated by
forwarding them to the challenger of dFH. The detailed simulation is as follows:

b the simulator samples all the keys excep{msksn, mpkg,) = ( ask pp).

D when it receives the challengéz?, x1) for label ¢, the simulator builds mg = ( Xi«||aUi ||U)
and m; = (X [laUi||U# where X, X,# are debned as above. Then it send@ng, m1)
to its challenger

D when it receives the challenge(yJ Y ) for label ¢, the simulator builds Fy = ( Yj# |7} ||T#B)
and Fy = (Y4 ||T; |1778) where Y,#, V% are debned as above. Then it send@Fo7F1) to
its challenger

b the other queries are simulated by the real algorithms.

By Eq. (4), we have !mg, Fy" = !mq, F1" which means this is a correct simulation. If the
challenger of d-FHIP scheme responds by bib = 1, this is the simulation of game Gg o~
Otherwise it is the simulation of previous game (which isGo,g or Gy, i\ 1)-

. is similar to the previous game, except that, the values ofl; # G for j % ;%

is replaced with [b" 7], for a Pxed vectorb™ # ZZ"* and fresh randomsr; . While for ;®
we sampleT; - uniformly from G3 *. A similar reasoning to the transition from Gy to Go.g,
on group G, works here. Since in our construction the valuedlj only appear in the group
Gg, the reduction to RSR-MDDH assumption in G, is doable. In fact, in the construction
we have[T] ], as the secret-key andsk = [ ij i Ui ]2 as the functional-key making the
simulation of corruption and functional-key queries completely doable.

Gg_%,i*_,. « [ is similar to the game Go.«i-j -, except for the simulation of cty, , cty, :

D in cty,, for all £ and i = i®, we replace the message-part/;- with ;- where the following
relation holds for a uniformly sampled &7; (Note that here we are looking atU; as a part
of the message in the inputs ofdFH.Endg).

Ui- = a/la,ay a(x“’ OO/‘)yjoiﬁ’ab/!b,Tj*"+ Ui« (5)

Bin cty, forall /andj = 7%, we replace the message-partjs = yjolla/!a, ay'(22.)
zt)yPl|T; with Y% = y0)lagy?l|T; (Note that for j % j* nothing is changed).
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To be clear, this means forcty, and ct,, we have:

(
} dFH.ENCppey, msken, atlI0lla®i 1T £ <
Cty, =\ dFHENpPPey, msken, 2|allaBi [Uf) €= ~,i= i® ®)
AFHENApPey, Msken, eX[0laBil[T7) £ > 7/ (0= 7,1 %)

where in the previous gamel/;- = U;- and in the current game ¥;- = T« (for i %%, U; is
the same in both games).

( .

} dFH.KeyGertimske, y°|lawo,y || 5 1| 778) Jj<jo

) dFH.KeyGerimskey, Y« || 7;8) Jj=40 (7)
dFH.KeyGettmskew, y'lla/!a, ay'(zP. ) =)y T IITB) 5> jO

Cty, =

where in the previous gameYjx = Yj# and in the current game Yjy =

Y% and Yj# and ij‘;i
are debned as above.

I

Note that the secret-key U;« in Eq. (5) is perfectly indistinguishable from the secret-key
in the previous game. Moreover, one can verify that:

Xi, a.Y# - X|# a.Y# ! i,j,é

where Yj# and Y# (res. for the previous and current game) are generally debned to be the
message-part after removmgf#ﬂ from the original message incty, . Similarly, X;x and X
are the message-part incty, by ignoring U from the original message.

Let us verify the mentioned relation for each case:

D for £ > ~, i %%, j < ;% (similar reasoning for all ¢ # [Q], i %%, j % ;%):
Xiy &Y = 12?l0llabh, yfllasyl T = Xy &Y}
b for £ < ~,i= 1% j > ;% (similar reasoning for ¢ %, i = i%,j % ;%):

Xi-x &Yip = 1l ||0llaUi , yflla/ta, as'(2f.) o)yl IIT;" =
ziy) + ali-Tj = oyl + ali-T (0)
= lzi|0llali- , ylla/!a,au(xl) o)yl " = X 4 &Y

where the equality in line (*) is due to the fact that axa =0, for ¢ % .
b for ¢ = ~, i = i® j < 5% (similar reasoning for ¢ = ~, i = ®,j % ;)

X 8y = lallaodlali | PllassflIT}" =
iy} + ali-Tj = aiyl + ali-T (00)
= lxil”a%”al:ji* s yjollalv/oij”TJ?" = Xi#i,# éYﬁ#

where the equality in line (**) is due to the fact that b7} =0, for j % ;°.
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D for ¢ < ~, i %1%, j = ;% (similar reasoning for all ¢ # [Q], i %14°, j = j®):
Xix &Y = 12|10l , yllla/!a, aw' (2. ) =h)ylIT" =
= 1at|lOlla¥; , yllawy T " = X7, &Y
D for ¢ >~ ,i=1% j= ;% (similar reasoning for¢ < ~ , i =% j= j%):
Xi- 4 @y = alll0llali , yflla/'a, a0 (el ) ak)yIIT;" =
oy + ali-T) = ady’ + ol T, (0)
= 12f|0llali- , yllayy/ 17" = X , &Y%
where the equality in line (0% is due to the fact that asa = 0, for ¢ %~.
Dfort=n~,i=1% j= 5%
Xig &jp = lafllasdlali, ylla/ta, au'(al. ) «t)y I " =
w0y’ + aUiTy = alyd + (2) o)yl + aoddi-Tj - (00)
= oty + aoli- T« = o llasdlalh, yllony IIT " = Xiy AV
where the equality in line (00%) is due to the Eq. (5) and the fact that £= ~ and j = ;%.

Thus, having Xfi’# aYjy = Xi-gaYjx '4,4,¢, allows us to reduce the indistinguishability of
concerned games to the dFH-security oflFH. Note that other queries, including corruption-
queries and functional-key queries, can be simulated simply by running the real algorithms
while authority-corruptions would be forwarded to the challenger of dFH.

Gj oy~ | is the same as games} o, ;. ,, When the functional-key sk ir rewritten based on

updates in the value of Ui~ (so, these games are identical). Note that for each index®, we
have the following hybrids on index j leading to the updates in the value ofU;-:

Gow.is ' Goopir.1 ~ Gg.%.i*.l ~ o Googirm v Gg.%.i*.m * Gg.%.i*

Therefore, to see how the value oSk is changed betweenGy - and Gf o, ., We need to
follow the updates during the above path.
At the beginning, the value of sk in Gyo.i.1 (@and Goopj+) IS :
# # #
sk = fiy UT} = fij UT; |+ Jirj Ui+ T,
jomi&i jom]
K

Then sk in G, ., is updated (by updating U®) to:

#
sk = K+ a/la,ay afi- () a2y + fij Ui T, ®)
j%m]

where the second term is due to the fact thatb7} = 0 for j % j® and b7} - %0. Similarly
going through all the m hybrids, sk in the current game G} o, ;- is (note that in Eq. (8),
every time only the last term changes):

#

0, 0, 0, # .
sk = K+a/lao’  fieg () oy fie BT

jAm] jAm]
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i+ | IS similar to the game Gf ,, ;., except that, for the simulation of ct,, and Cty, :

binct,, for £= v, i = i¥, we replace the message-parki = x}|la with X}, = z||0.

B incty, : for all £ and j, we replace the message-partjs = y°|lag,y with Y% = y0||0.
Similar to the game Go.4,i-, One can verify that: X4 &Yjs = X/, éiji "4, 4,¢ allowing

to rely on the dFH-security of dFH.

Gjo, | is the same as gamesh, , when the functional-key sk ir rewritten based on the
updates in values ofU;. Note that for each label v, we have the following hybrids on indexi:

Gow l Gosws ~ Ghoes ~ Goltes ~ - - ~ Gosen ~ Gooen ~ Gooen & oo

Leading to the following functional-key in the current game (with a similar reasoning to the
gameGj o, ;.):

# B 0, 0, 0, . # .
sk = Fi O + a/la,as' fij (207 21y = fij O
jom]i%n] jm]i%n]

where the last equality is due to the constraintsx] Fyo = x{ F yo.

: is similar to GS’Q ,except that, the secret-keyU; is replaced with the key U; in all the
queries and challenges. Here we are using the fact that for a corrupted client/slot, we have
z! = 20 leading to answer the corruption queries byT; (due to Eq. (5)). Meaning that, in

adversaryOs point of view; Os are the secret keys.

: is similar to the previous game , except '[hat,yjO is replaced with yjl. The transition
rom game G; to G, is similar to the transition from Gy to G; considering the hybrids on
indices j and then 4, and using the constraintx] Fyo = x{ Fy;. .-

In the following we use a similar transformation used in R7] to lift the security from the
weak version to a stronger one with standard constraints over the queries. This transformation
is equivalent with adding » dummy clients on the z-side andm dummy clients on the y-side,
which encrypt 0 for all the labels.

Theorem 5. In Theorem 4, if we replace x with x||0 # Zé“, y with y||0 # ng and F
with F#= (5 %), the security holds w.r.t the standard constraintsx} Fyo = x] Fy;. More
Precisely, if our 2-MCQFE is weakly secure, then the mentioned transformation results in a
2-MCQFE scheme with standard constraints.

Proof. Let cty be the set of all the z-side ciphertexts associated with messag&” (and cty
is debned similarly) andsk:- is the functional key associated with the matrix £# debned as
above. We proceed through a sequence of hybrids as:

{Ctxonon 7C'[yo”om ,Sk}:/} ('- {Ctxo”Xl,Ctyo”om ,SkF/} é
{Ctx1||X17Cty1||0m , Ske /} € {CtX1||on , Clty1)om , Ske}

Where all the relations & holds due to the weak security of 2-MCQFE. Moreover,é holds
by the standard constraints in the theorem. .-
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5.1 From one to many

Now we upgrade the security from OoneO to OmanyO (see Debni®nIintuitively, the
construction can not support many ciphertexts per label, because for a bxed label with
dilerent ciphertexts there is no randomness. Thus, the idea is that we add randomness to
the ciphertext, but in a way that it can be removed later. To do so, we add a layer of 2-input
QFE (i.e., our scheme in Fig. 7)) over a 2-MCQFE.

For this at brst we need to slightly modify our 2-input QFE in a way that the FHIP
scheme is replaced with ourdFH scheme (Fig.9). In the following corollary we analyze the
security of our extended 2-input QFE. The security notion is as Debnition8 when there are
only two clients and the label setLabelshas only a single element. As there is only a bxed
label, we donOt need to explicitly write it.

Corollary 1. If dFH is secure, then our extended 2-input QFE scheme is many-s&\iD
secure.

Let xx and y; be the k-th and ¢-th queries issued by the brst and the second client (res.).
The security proof is similar to the security proof of Theorem 4, where instead of the hybrid
over the labels we consider a hybrid over the query-numbek (to go from Gy to G;) and a
hybrid over query-number ¢ (to go from G; to G;). In fact, every thing is the same except
that instead of working with the random oracles we work with randomnesses chosen by the
clients.

Let the ciphertext associated with z;, in 2-input QFE be as Eq. (9), and in 2-MCQFE
be as Eq. (L0) (in a general form).

Clox =[rl1, Cloy =[1"2, cty, = FHENAx[[Vir) cty, = FH(y;[IVif ) (9)

cty, = dFHEndxi||Wiz)  ctj, = dFHENdy;||W};) (10)

where Vi, is a combination of some secret keys and randomnessand W » is a combination
of some secret keys and hash functions ovétr (similarly about Viﬁ and Wif‘#). Then we build

our many-secure 2-MCQFE (called 2MCQFFEY) as follows:

Clx,, dFH-EndXi”OZk”VLr [[Wix) ctox, =[], CtO,yj = [7”#12 (11)

dFH.Endy; [J0%[[Vi#  [IW/%)  ske = ({skj }ij ,sKE)

Cty”

Where ctpx, is associated with the randomness chosen individually by thec-side client ¢,
sk; and slé are the functional key for 2-input QFE and 2-MCQFE schemes respectively,
and F # Z&" *™, xi,y; # Z, wherex = (X1,...,Xn), ¥ = (Y1,---,Ym)-

For the index i, we denotek-th query as x;, , the leakage from ideal functionality (i.e.,
xTFy) can be considered as:

i Figyio) i yi (12)
Which means in the security game we have,

CA)TE YY) )Ty =) Tyl ) )Ty v
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Remark 2. Here we discus on the leakage of ideal functionality. One can formulate the
leakage in dilerent (but equivalent) ways so that it can help the proof.

1. if we start with the Prst query for index ;* and yve just change the query on index®
to the k-th query. Then the leakage is:(Xi; ) Xi:) ' i fiejVYj.-

2. in the previous case we assume that we have started withth query on the index ;°,
sO: (Xix ) Xir)( jaj«fijVio+ fisjyir)

3. Putting two previous leakage we get:(Xi- ) Xi:)f i~j-(yj-) yj;) for any iy and j3

4. Now in the security game the adversary can issues queries, if it asks for a query
Yjr = 0, thenitcan bPnd (Xi- ) Xi:)fi«j-yj: (via the equation in step 3).

5. Consequently it Pnds(Xix ) Xi:)f i- Yir, for the t*th query on ;% (since the equation
in (3) holds for any j¥).

6. Similarly it can Pnd X;:f i *(yj[*/ ) Vi)

7. Putting steps 5 and 6 together, it bnds the leakage given in Eq.X2).

Note that we computed a special form of the leakage from the original one, so if the proof is
working for this leakage then the scheme is secure for the original case.

Now we address a special property of LinOs FHIP scheme (and consequently our dFH scheme)
which is used in the proof.

Property 3. Given the encryption associated with x, one can compute the encryption of
x||x* Similarly given the functional key associated withy, one can compute the functional
key for y||y*.

To see this, let FH generates the ciphertext and functional key corresponding withx and
y wheremsk= ( skp, sky) is the master secret key. Then the ciphertext and functional key are
in the form given in Property 2, and by sampling msK, and having the encoded randomness
used incty, we can compute.

/ 0
FH.EngmsK|msK’, x||x® = " Iske||sK, cty||ctx/", ciy||Cty/

where
Isko||SKS, Cty ||cty " = Isko, Cty " + 'SK], Cty".
and the underlined part comes from the encryption ofx. And similarly,

FHKeyGemsKImsK. ylly) = Enask+ sk, skullskl,ylly™: [, ey licty
where
Endsi§ + sK5,)! skallsk;, ylly™; [r]2)
= Endskd,)! sky,y"; [rl) + Enask, ) sk, y™: [r]2)

Note that the ciphertexts cty and cty. share the same randomness, thus one can write
Cty|lcty: = cty)xs (Similarly cty||cty, = ctyy/). Putting to gather we get the ciphertext
and functional key for x||x* and y||ly* generated by FH associated with the master key

msk*= (msk msK) = ( skil|sK;, sk + sK%, skb|[sk5).
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Now we are ready to prove many-security of our 2VICQFE’ construction.

Theorem 6. If dFH is secure, 2-input QFE is many-seldIND secure, and 2-MCQFE is
one-sel-secure, our suggested construction RICQFE’ is many-sel-secure.

Proof. We proceed via a sequence of the games, the brst and the last games are the real
games respectively forb = 0 and b = 1. Fig. 13 summarizes the required games. In the
ciphertexts of our many-secure 2-MCQFE (Eqg. (L1)), we dePneX;, » = (x;, #|/0%¢) and
Yj, # = (yj, #/10%) as the messages associated with the labél

Go: is the real game associated withh = 0.

G;: is similar to the previous game, except that in X, #, the vector 0% is replaced with
Ay = X, 4lIxP, 4 and in Y], 4, the vector 0% is replaced with Bf} , =) y}, 4lly}, 4. One can
veribes that:

AIO# o T 0 iﬂj7£>£#

Thus by relying on the security of dFH, gamesGy and G; are indistinguishable.

G,: is similar to the previous game, except that, we replace the lask? x (In AY,) with xIl 4

and correspondinglyy?h# with yilly#. GamesG, and G, are indistingwshable relymg on the
one-security of 2-MCQFE. The simulator can simulate the encryption queries by Property3.

Gs: is similar to the previous game except that, we deaneS,Ok R x0 #||x + and replace
it with G ., and also D0 = y 4l y 4 with D!, for all Iabels (see Fig.13). This
transition needs a simple hybrld on ‘the Iabels In each hybnd the constraintsEq. (12) allows
us to rely on the security of 2-input QFE. The simulator can simulate the encryption queries
by Property 3.

G,: is similar to the game G; and allows us to replace,A!, and B} ., with vectors 0% and

0% where Af, and B} ,, are debned in the game5; . This is then the real game associated
with b=1. .-

Game Description justibc.

Go X0

lkf_

Sl YR =y .ll0 real gameb =0

G Xik,Z” Xn,eHXz‘l,e dFH

0 0
y?‘ ,£|| _yj1,f| |yj1,f

G X9 AIX2 ol X3 e one-security
2
Y% el = y%.e” Y;,Z 2-MCQFE
1 1
Xik,ZHXil,Z ||X11£ .
Gz n 2-input QFE
Yiell —leie Hyjl ¢
Gs Ik = X eH@ ]t = yjt M@ dFH, real game b =1

Fig. 13: The sequence of games for many-secure 2-MCQFE.
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